__0_21.}_(20__1)_1"*““ ,

Ug \ P 3(1—u)

which governs the relation between the relative volume v/v, of the cylinder in a rigid yoke, on the one hand,
and the relative density p/p, (0, = 1/v,) of the free body from the same material, on the other, for a given
temperature t when there are no external forces (p = 0,0 = 0).

It follows from Fig. 2 that the computed and experimental results are in good agreement. These data
can be used to determine the dependence of the elastic moduli, the coefficient of thermal expansion, and some
other physical characteristics as a function of the pressure and temperature.

LITERATURE CITED

1.  N. I Nikitenko, "'"Temperature dependence of the interatomic potential and the equation of state for con-
densed bodies," Zh. Fiz. Khim., 52, No. 4, 866-870 (1978).

2, N. I. Nikitenko, Investigation of Heat and Mass Transfer Processes by the Mesh Method [in Russian],
Naukova Dumka, Kiev (1978).

3. N. I. Nikitenko, "On the question of the mechanism of heat conduction and expansion of bodies during
heating," Inzh.-Fiz. Zh., 23, No. 4, 751-752 (1972).

4, A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

5. L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Nauka, Moscow (1964).

6. N. L. Nikitenko, ""On the question of the heat transport mechanism in a solid," Teplofiz. Vys. Temp., §,
No. 6, 1029-1034 (1968).

7. L. V. Al'tshuler, K. K. Krupnikov, B. N, Ledenev, V., I. Zhuchikhin, and M, I. Brazhmk 'Dynamic com-
pressibility and equation of state of iron at high pressures,” Zh. Eksp. Teor. Fiz., 34, No. 6, 874-885
(1958).

ANALYSIS OF THERMAL MODEL OF THE CONTACT

HEAT TRANSFER OF ROUGH SURFACES
G. N. Dul'nev, Yu. P. Zarichnyak, UDC 62-182.8.017.7
Yu. V. Kuznetsov, and B, V. Pol'shchikov

A thermal model of the contact heat transfer between rough surfaces is considered, taking into
account curvature of the current lines in the gaps. Theoretical relations determining the con-
tact thermal resistance at small pressures are obtained,

Formulation of the Problem

One of the parameters which has a significant effect on the thermal conditions in apparatus is the con-
tact thermal resistance (CTR) due to imperfections of the mechanical connection between the contacting sur-
faces.

In [1-4] a detailed analysis was made of the results of investigations of CTR by Soviet and non-Soviet
authors, the mechanism of contact was explained, the physical basis of the heat transfer through the contact
zone was discovered, and practical recommendations for the intensification of heat transfer were given, How-
ever, as the forms of real mechanical connections are so different and so complex, it is often a laborious task
to use the results of [1-4] for the calculation of CTR. There are several reasons for this:

a) the theoretical relations are only adequately reliable for the simplest case of contacting-object ge-
ometry =~ tangency of plane surfaces;
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b) the range of specific compression forces of the contacting surfaces investigated is not characteristic
for typical problems of instrument-making. The theoretical dependencesallow CTR to be determined at pres-
sures no less than (10-60) - 10° N/m?, In practice, instrument-making usually requires calculations of CTR at
lower pressures — (1-10) - 10° N/m?, The recommendations for heat-transfer intensification in the contact
zone available in the literature give only qualitative characteristics. The results given below allow the existing
gaps to be somewhat reduced.

The heat flux P passing through the contact zone may be divided, for the purpose of analysis, into two
components: a part Pp of the flux passes through the point of physical contact, and a part Py, through the
medium. The corresponding conductivities are denoted by ap and am, and the total conductivity is expressed
as their sum

a=ap+am (1)

The first term ap in Eqg. (1) is determined by the actual contact area and the thermal conductivity of
the contacting materials. There are several methods of calculating ap. The most widespread method which
is sufficiently accurate is derived from the realization of the "button'' model [5]. Here the contact is modeled
using two infinite cylinders with a single circular contact spot at the center, the area of which models the ac-
tual contact spot.

The actual contact area (ACA)ndependson the physical properties of the materials, their treatment,
and the compression forces. The error in calculating o is determined to a considerable extent by the error
in n, and therefore the method for calculating o may be improvedbothby making the model of heat transfer
through the contact zone more accurate and by improving the method of calculating 7. In [5, 6], the present
problem is discussed in sufficient detail and, although the existing solutions cannot be regarded as final, they
may nevertheless be used for the calculation.

The value of the second component in Eq. (1) is determined by the configuration of the contact-medium
surfaces. In [1~3], the following relation is proposed for the calculation of apy:

*y= Am/‘sequ' (2)
where ‘5equ is the thickness of the equivalent plane layer applied between the contacting media, and is deter-
mined by equating the volumes of the effective layer and the real gap

5 — Sy (3
ewm (3 (Sb}dSN—k 2
where I is the value of the temperature jump if the layer is filled with gas; Sy, nominal area; 6 (Sy), size
of the gap, which varies with Sy. '

Analysis of Methods of Calculating CTR

In the literature there has been fairly detailed consideration of the heat transfer at specific pressures
P>(10-50) - 10° N/m?, i.e., in the case when the heat transfer is determined by the conductivity through the
point of physical contact, ap > am. This situation is explained by the historical development of these investi-
gations. The first and most fundamental works arose out of engineering fields associated with turboconstruc-
tion, atomic power, and rocket and aeronautical engineering. The mechanical and thermal models on which
the calculation of ap is based have been sufficiently well studied [1, 2]. The conductivity cym plays the role
of a correction here, and has been less thoroughly studied than ap. In instrument-making, the main contribu-
tion to the heat transfer through the contact area is often the conductivity of the intercontact medium apy =
s which is explained both by the small specific pressure (1-50) - 10% N/ m? and by the use of greases and
pastes with high thermal conductivity A = (0.1-3) W/m °K,

It was also noted that on changing the medium filling the intercontact region the conductivity ay does
not change in proportion to the change in thermal conductivity of the medium
%im _ %O Mm

oy Gcz—— %py me

Here agy, Q¢ are the total contact conductivities for different filling media with thermal conductivities Aym,
Aym; Upts Qpy are the conductivities through the contact point; aym, @sm are the conductivities through the
medium,

In the light of the above factors, the model of heat transfer was refined, and the appropriate changes
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faces.

were made in the theoretical relations determining the CTR; this affected primarily the determination of om.

In the known methods [1, 2] for determining @y, it is assumed that the contacting surfaces are iso-
thermal, Below, a thermal model which takes into account that the surfaces are nonisothermal in determining
@y is proposed.

Geometric Model of Contact

The characteristics of the sample-surface profile (height and radius of curvature at the top of the micro-
projections) depend on the treatment and properties of the material, A typical surface profile is shown in
Fig. la. In the general case, such microprojections take the form of segments of an ellipsoid, of which the
height is most often less than the radius of curvature at the top. In [5], a comparative analysis of different
models was made, and it was shown that the microprojections are most expediently modeled as a set of spher-
ical segments distributed at constant density over the surface (Fig. 1b) of the contacting surfaces. The height
of an individual microprojection is a random quantity conforming to a normal distribution law. The axes of
opposing microprojections of contacting surfaces lie on a single line,

Analogous models are often used in investigating the actual contact area, closest approach, frictional
coefficient, and thermal conductivities of mixtures and composite materials,

Thus, the contacting surfaces are represented by a set of elementary volumes, shown in Fig. 2. Here ry
and r, are the radii of curvature; 2L is the maximum height of the volume; h; and h, are the heights of the
segment,

The height and base diameter of the segment correspond to the spacing and height of the microprojec~
tions. The contacting surfaces usually have different roughnesses, and therefore the base diameters ¢, and
a, are not equal, Different methods of choosing the mean @ may be considered. Analysis results in the follow-
ing recommendation

2044,
a; -+ a .

(%)

Thus, each elementary volume forms a cylinder whose side surface does not intersect the current lines
and whose base is an isothermal plane. The contacting surfaces form a set of elementary volumes. The seg-
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ments in the cells are of different heights. Depending on the form of treatment, the distribution law may be
different. At present, many researchers believe [6, 7] that the height distribution of the microprojection tops
follows a normal law

(hi"“mi)z

where hj is the height of the microprojection; m;, mathematical expectation of a random quantity; o, mean
square deviation; i = 1, 2 denotes the first and second surface, respectively.

Investigations [4-7] of the contact interaction of solids have shown that the height distribution of the
microprojections m ay be described by a normal law. In view of this, it is assumed on the basis of the "three-
sigma' approach [8] that

m = hmax i/2; 0-zhmax ;/6 (6)

Further, it may be confidently asserted that the difference hy,,«; — hj between the constant quantity
hmaxj and the random quantity h; is also random, obeying a normal distribution law with the same parame-
ters m and o. Then 6 = (hypaxy— hy) + (hmaxs — hy) is the gap between roughness microprojections. The
parameter 0 in the model is also a random quantity obeying the normal distribution law. An expression for
the probability density of the given random quantity may be obtained by considering the combination of the two
normal distribution laws for each side

_ 1 (6 — my)?
§) = — S T
g . V%EXP[ 2 ] (7)

2
3 203

where 6 is the size of the gap; o5 and mg are the mean square deviation and mathematical expectatlon, de~
fined as follows:

=V'0? + 02 my=m; -+ m,.

For contact between surfaces of the same roughness, the gap~thickness probability density is given by
- the expression

g0 =

3 exp [_ ”(6 max)z
Thmax hmax3/ VZ | (8)

As has been indicated, the contacting surfaces form a set of closely packed elementary volumes on the sur-
face, differing in the value of the gap 6. It is now assumed that the number of volumes with a gap 6 lying in
the range 0,=< 6 < 6, is proportional to the probability that the random quantity é falls in the interval [0;

4,1, The thermal conductivity a, which is functionally related to 6, is evidently also a random quantity, with
the same probability density g(6). In this case, the mean thermal conductivity is

hathg
ap= | a(®g®)ds. (9)
0
Or, passing to a finite interval, it is
%= 2 Pia;, . (10)

=1

where n is the number of divisions; P;, probability that a cell with a definite 6j will appear; aj, thermal
conductivity of the i-th cell,

Taking the confidence range +3s, and determining the thermal conductivity at the midpoint of each of
" six intervals of width o, specifically oy, @y, ..., a stepwise-linearized approximate formula for am may
be obtained in the form

o= 0.02 (0t -+ atg) + 0.34 (og -+ @) + 0.14 (o + 3). (11)

Mathematical Model of Contact and Its Realization

In Fig. 2 the form of the current-line distribution and the form of the isotherm in an elementary volume
are shown for the case when Ap > Ap, the side surface at r = a is adlabatlc, and the surfaces at z =L are
isothermal. Denoting the temperatures of the surfaces z =+L by t' and t"', and the heat flux by Q, the defi-
nition of the thermal resistance R of the volume is then
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_ =t (12)
= . 4

R ) .

The calculation of the thermal resistance reduces to the analysis of the temperature field of the system of
bodies. The temperatures in the regions occupied by the first and second segments are denoted by t; and t,,
and that in the intercontact region by t,. The temperature field of these regions is described by differential
equations of the form

oy 1 9 A
0x? x 0Ox oy
with the boundary conditions

ot oty |
LR =0; & . =hy— ] 3 Eily=ion = faly=i()3
0x  lx=o on ly=n on |y=pin
: ot
tily—zr = const; =0,i=1, 3
z‘y +=L ax o

According to the model adopted, the equations of the surfaces take the form

P =L+ —n—Vii—2 [x =‘h2—L——r2-{—V/r§—x2.

Determining the temperatures tjs the flux through an elementary volume Q may be found

:‘iji
J 0y

a4
0z

xdx.
z=L

dS: - 23‘5;\4 5‘

2==L

This problem is solved using the approximate method of calculating the generalized conductivity outlined in
[9]. The basic feature of the method is that the curvilinear current lines are replaced by rectilinear lines,
which simplifies the mathematical description of the investigated processes. To linearize the flux in an ele-
mentary volume, it is divided by a system of auxiliary adiabatic surfaces parallel to the flux and isothermal
surfaces perpendicular to the flux.

The solution obtained by this method has been compared with the results of the standard solution. The
standard solution is taken to be a numerical solution of the problem of contact at a point between two hemi-
spheres [10]. Comparisonwiththe results of numerical solution shows that the true value of the resistance is
satisfactorily described by the dependence

R=(R,+ R;)/2,
where R, and R; are the resistances for the adiabatic and isothermal divisions.

Since the problem may be regarded as symmetric with respect to the plane dividing the elementary cell
in half, the calculation may be carried out for half the cell. The thermal resistance of an annular layer (cur-
rent tube) of thickness dx with an adiabatic side surface parallel to the general direction of the heat flux is

dR, = dR, - dRy, ‘ (13)

where dRy and dR, are the resistances of the sections of the layer with thermal conductivity A, and A,.
Writing dRj (i = 1, 2) in the form

VE—2—(r—h) L—{Vrt—x—(r—h)] (14)
Ry = 2ahyxdx ;o ARy = 2adgxdx

and substituting Eq. (14) into Eq. (13), an expression for dR, is obtained

1 [Az[Vrz—xz——(r——h)] M (L— [ = — (r—h)]) }

dR,y = 2nxdx Aghs

(15)

Integrating Eq. (15) with respect to x from 0 to a, an expression is obtained for the thermal resistance at the
adiabatic division

Ry— 4 4= o l/1~(~‘:—)2; g=L ko

2n)0r 1—v r (18)
— —1
v:—z'z—; A, = c—!—gln—g——c——l] .
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* Fig. 3. Dependence of contact thermal resistance R *
10" m*-°K/W on the airpressure P - 10° N/m?% a) re-
sults for the material 1IKh18N9T, purity of treatment
V5~ V35, from experiment (I), from Eq. (21) (1), and
from the method of [1] (2), and results for the material
St.45 vapor, purity of treatment V4 — V7b, from ex-
periment (II), from Eq. (21) (3), and from the method
of [1] (4); b) results for the material D16 vapor, purity
of treatment V8—8c from experiment (I), from Eq.
(21) (5) and from the method of [1] (6) and another set
of results from experiment (II), from Eq. (21) (7), and
from the method of [1] (8).

The resistance of a plane layer of thickness dy with an isothermal base perpendicular to the heat flow
takes the form
dRdR
dR, = 2
' dR;+dR, (17)

where dR; and dR, are the resistances of sections of the layer with thermal conductivity A4 and A,.
It is obvious that
dRs = dy ; dR. = 4y .
Mzr2—(y+r—h7 Aot [a2 — 2+ (y+r— h)Y]

Substituting dRg and dR, from Eq. (18) into Eq. (17), an expression for dR; is obtained, and integrating
this with respect to y allows the thermal resistance R; to be determined

(18)

dR; = Y ; (19)
a4 @ — ) — (O — M) g + 7 —h)
- Ing+m 'm=2-£b(1_L‘ (1 — v\,
t 2nb (1 —vyhy a2 L )( v )’

(20)

Thus, Egqs. (16) and (20) allow the admittedly increased R, and reduced R; values of the resistance of
half the cell to be calculated. Finally, the resistance of the cell is taken to be the arithmetic mean, as indi-
cated earlier. Then for the whole cell

R = (R, + R))/2. (21)
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Fig. 4. Dependence of contact thermal resistance
R * 1074 m?-°K/W on pressure p- 10° N/m% a) re-
sults in the contact zone of PFMS-4 resin for the
mat material St.45 vapor, microprojection height

h = 20 4, from experiment (I), from Eq. (21) (1),
and from the method of [1] (2), and results for the
material D16T vapor, height = 10 ym, from experi-
ment (II), from Eq. (21) (3), and from the method
of [1] (4); b) results in the contact zone of air, for
the material St.45 vapor, h=12um, fromexperiment
(1), from Eq. (21) (5), and from the method of {1]
(6); and for the material D16T vapor, h = 10 ym,
from experiment (II), from Eq. (21} (7), and from
the method of [1] (8).

Analysis of Solutions

To verify the model proposed and the corresponding theoretical relations, calculations by this method
were compared with the experimental results of [1] and also with calculations by the method adopted in {11.
In comparing the experimental and theoretical results of [1], the relative error is in the range dp = +33% with
a confidence level of 0.95. The mean square deviation here is 14%, In comparing the experiment [1] with cal-
culations by the method here proposed, the relative error is in the range bp =% 15%, with a confidence level
of 0.95. The mean square deviation is 7%. In Figs. 3 and 4, experimental and theoretical pressure depen-
dences of the CTR are given.

In comparing the present experiments with calculations by the method of [1], the relative error lies in
the range 0p =+32% with a confidence level of 0.95. The mean-square deviation is 15%. In comparing the
present experiments with calculations by the method here proposed, the relative error lies in the range 5p =
+15%. The mean square deviation is 7%. In the whole experiment the relative error in the calculations ac-
cording to [1] did not exceed 35%, and in calculations by the method proposed here — 19%.
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THEORETICAL AND EXPERIMENTAL INVESTIGATION
OF HIGH-LEVEL RADIATION SOURCES USED TO
MODEL A HEAT INPUT

V. M. Gradov, B. B. Petrikevich, UDC 620.172.251.282
and A. A. Shcherbakov

This paper examines high-intensity xenon-filled radiation sources for heat load simulation. A
mathematical model of the discharge is proposed, and results of a theoretical and an experi-
mental investigation are presented.

One of the main problems which one has to resolve in various branches of technology is that of testing
objects under conditions as close as possible to the actual conditions. Many literature references (a detailed
bibliography is given in [1]) discuss problems associated with creating facilities to simulate conditions of op-
eration of items of contemporary technology. In some cases a key element of such simulation systems is a
high-intensity radiative source (HIRS). A promising HIRS is the pulsed xenon source which has high efficiency
in converting electrical into radiative energy, is economical, has a large radiative flux density and high oper-
ating stability. To construct a high-efficiency HIRS and to predict its properties reliably requires theoretical
and experimental investigations.

The present paper gives some results of mathematical modeling of the working process in a HIRS, de-
termines the limiting characteristics, and describes an experimental investigation. It should be noted that in
natural-model thermal endurance tests an HIRS may operate in a heater system comprising several sources
and reflectors. The investigation and the development of an HIRS incorporated into a facility requires the de-
velopment of a complete system for computer design of such facilities, based on methods of designing and
testing of an individual isolated HIRS.

Mathematical Model of the Discharge. We assume that the plasma is in a state of local thermodynamic
equilibrium (LTE). The system of energy balance and radiative transfer equations describing the physical
processes in the discharge takes the form

1 d dT 2 .
L A —|+o(MEI—divF =0, 1
R% dz[zT()dz] (& f (1)
1 d 1 du, ] -
—_— |2 = | T I\v (uv. — uv) = O, 2
3R dz [ Ky dz e (2)
div FI‘ =C g‘ K\"}: (uVe—u.,,) dv. (3)
o
The boundary conditions are
2—0, 4T __o I _,, (4)
dz dz
A du,
Z‘—_l, T:"_'Tu:v Uy = — —— —(—
RK\;}: dz (5)

Here we neglect convection and postulate that the voltage E,; is constant along the arc. Equations (2) and
(3) describe radiative transfer in the diffusion approximation. According to the data of [2], the constant A =
0.847.

N. E. Bauman MVTU. Translated from Inzhenerno- Fizicheskii Zhurnal, Vol. 38, No. 3, pp. 450-456,
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